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Abstract 

Principal circle bundles with connection and symplecfic curvature over Banach manifolds 
are investigated. Using results on contact manifolds alternate proofs for some results of 
B. Kostant are given and a symplectic structure for the total space of the corresponding 
principal e \  {0} bundle is constructed. As an example, these results are applied to the 
projective fibration of a complex Hilbert space. This gives close relations between the 
geometric formulation of classical and quantum dynamical systems. As another applica- 
tion, a functorial construction of the prequantization procedure of B. Kostant is given. 

1. Introduction 

In the symplectic formulation of classical Hamiltonian mechanics pure 
states are represented by  elements of  a symplectic manifold(M, co). Observ- 
ables are given b y  continuous functions on 3//. The space ~-M of  all smooth 
observables is a Lie algebra under Poisson brackets.  The symptectic maps are 
the isomorphism of  the system, and dynamics is given by  flows o f  Hamiltonian 
vector fields. 

A prequantum bundle L c over a symplectic manitbld (M, co) is a principal 
circle bundle over M with curvature co. These bundles have been introduced 
by  B. Kostant (1970) for the construction of  the prequantization map,  which 
is a representation o f  the Lie algebra ~ ' M l b y  ant isymmetric  operators on a 
Hilbert space. B. Kostant (1970) showed that  dynamics o f  a mechanical system 
(M, co) can be expressed in terms of  the prequantum bundle. This in turn may 
be interpreted as mechanics with phase factors. In particular, there is an iso- 
morphism between ~ M  and the Lie algebra o f  connection-preserving, vector 
fields (ine infinitesimal prequantomorphisms)  on the prequantum bundle L c. 

In the I-filbert-space formulat ion of  quantum mechanics pure states are 
unit rays of  a Hilbert space •, i.e., elements of  the complex projective Hilbert 
space H -- H/C. Dynamics of the quantum system is given by the Schr6dinger 
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equation, which describes the flow of  a Hamiltonian vector field (the Hamilton 
operator) on ~ with the natural symplectic structure. 

In this paper we investigate prequantum bundles over possibly infinite- 
dimensional manifolds and show, as an important example, that the projective 
fibration of  a Hilbert space is a prequantum bundle. This fact enables us to give 
a unified geometric description o f  classical and quantum dynamical systems. 

In Sections 2 and 3 we prove some necessary results on contact manifolds 
and show the equivalence between torus bundles with connection and certain 
principal C\{0} bundles. The next two sections are the main part of  the paper. 
In Section 4 we investigate the structure of  prequantum bundles over Banach 
manifolds. Using the results o f  Section 2, we give alternate proofs for some 
of  the results of  B. Kostant (1970). Moreover, we construct a symplectic form 
on the total space o f  the complex prequantum bundle such that the connection- 
preserving vector fields are just the invariant Hamittonian systems. 

In Section 5 we show that the projective fibration of  a Hilbert space H defines 
a prequantum bundle, which induces the natural symplectic structure on H. 

We apply these results in the last two sections. In Section 6 we show the 
close relations between the geometric structure of  classical and quantum 
dynamical systems, if we use the unified description in terms of  prequantum 
bundles. 

As another application we give in Section 7 a functorial construction of  the 
prequantization procedure of  B. Kostant in the category of  prequantum 
bundles. 

The differential geometric notation in this paper is, although slightly modi- 
fied, based on the book of  Abraham and Marsden (1967). In particular we use 
the following symbols: TM is the tangent bundle of  M; Tf is  the tangent map 
o f f : M - +  N smooth; T%/is the cotangent bundle (we use the II" II topology on 
the dual space of  a Banach space); f M  is the ring of  real smooth functions 
on M; f M  is the Lie algebra of  smooth vector fields on M; Y '~ /=  YIaM are 
the one-forms on M; ~-x is the Lie derivative; _J is the inner product;  3¢gM are 
the Hamiltonian vector fields on M; LG is the Lie algebra of  the Lie group G; 
hor = horizontal, vet = vertical, inv = invariant, equ = equivariant, ~; = C \  {0}, 
and ~ =  [~\(0}. 

2. Contact Manifolds 

Contact structures are needed for the construction of  the prequantization 
m'ap. In this section some fundamental facts about contact manifold are 
presented. 

2.1. Definition. Let M be a Banach manifold, 0 E t21 M a one-form on 34. 
Define the presymplectic form co := - d O  and the induced musicalic morphisms 
co ~: TM -~ T'M, v m ~-+ co(v m,'). 0 is called a con tact form iff for all m E M. 

(a) dim Kerco~'(m) ; codim Imcob(rn) = 1 
(b) KerO@M Kerco = TM 
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For any contact manifold (M, 0 ) t h e  characteristic bundle CM: = Kerco 
defines a one-dimensional fibration of  M, the characteristic fibration. Sections 
in G ~  are called characteristic vector fields. Denote by <gM the local one- 
dimensional ~ 'M module of characteristic vector fields. 

2.2. Remark. There is a vector field Z E ~ M  uniquely defined by 

Z . J c o = 0  and Z A O = I  

Zis  called the Caftan vector field and is a base of  CgM. 

For two contact manifolds (Mi, Oi), i = 1 ,2  contact morphisms are smooth 
maps f : M  1 -+ 342 with f*O 2 = 0 t. Note that contact morphisms preserve 
characteristic fibers and Tf(Crvll) C CI1/I 2 for any contact mapf.  In particular 
Tf(Z(ml)  ) = Z ( f ( m l )  ) for m 1 ~ M  1. Denote by CtMfthe  category of  contact 
manifolds with contact morphisms. 

2.3. Notation. Let (M, 0) be a contact manifold. Cont(M, 0): = 
{)"C Diff(M)If*O -- 0} the (special) contact group. ~ M  := {X E XMI LxO = 0} 
the (special) contact vector fields. ~ h M  := ( f  E ~ M  t L x f  = 0 for all 
X E ~gM}. 

Remark: (a) ~ M  is a Lie subatgebra o f  ~3g, and we can interpret ~ M  as 
the formal "Lie algebra" of  Cont (M, 0), since any X E # M  has a flow of  
contact isomorphisms. 

(b) ~ I ~ I  consists of  all real functions on M that are constant on the 
characteristic fibers ofM. F o r f E  ~ ' M w e  have f E  .NhMiff  for all m ~ M :  
dfm ~ Imcob(m). 

2.4. Definition. Let (M, 0) be a contact manifold andf,  g E o~hM. 
(a) Gf ~ Y'M is uniquely determined by Gf _J co = d f  and Gf _i 0 = O. 
(b) Pf ~ ~ M  is uniquely determined by Pf_t co = d f a n d  Pf _t 0 = f 
(c) The Poisson brackets of f and g are defined by 

{f,g} :=Gf  l Gg-] co 

2.5. Remarks. (a) For f E  °ShM Lcf.~. = dGf _J co = 0 so Gfhas a pre- 
symplectic flow. Gf is the "Hamiltonian" vector field off .  

(b) We have the formula Pf = Gf + f" Z 
(c) d {/; g} = [G,, q ]  _J co. 

2.6. Theorem. Let (M, O) be a contact manifold. The map P. defined 
by 2.4(b) is an isomorphism of Lie algebras P. : ~'hM -+ ~ M  with 
._J 0 (X>--~X _1 0) as inverse map. 

Proof  for f E  ,~hM we have LpfO = Pf _] dO + dPf J 0 = 0, so P;. E ~}L 
Pf__l 0 = f b y  definition. To show P x ~  o = X for all X E # M  we use the 
decomposition of  2.1. (b): PxA o -J 0 = X_5 0 by definition and Px_J o J dO = 
- d ( X  _2 0)  = - L x O + X ~ dO = X _2 dO, since X E NM. Thus X and Px ~ o 
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have the same components. This proves • _J 0 to be the inverse ofP.. By definition 
P{r,g} I 0 = ~, g} so • _J 0 is a Lie algebra morphism. 

[Pf, Pg] I O= ~_pfPg _J O = {f,,g}= P~f,g}_A t9 

and 

[Pf, Pg] ~ co =dPf _J Pg ._J co =d {f,,g} : P{f,g} _] co 

So P~f,g} = [Pf, Pg]. This proves 2.6. 
For a contact manifold (M, O) we define MR÷ := R + x M a n d  p : M ~ .  -+M, 

s: MR÷ -+ ~+ the natural projections. Then (MR +, p, M, ~+) is a principal 
(R +, • ) bundle with d(tog s) as the natural connection form. The two-form 
--d(s. p*O) = -d sA  p * O -  s" p'dO is, nondegenerate and ~+ equivariant. So 
we have the following: 

2.7. Proposition. (R + x M, ~d(s.  p*O)) is a symptectic manifold. 
If  f :  (M1, O1) -~ (342, 02) is a contact morphism, 1~ ÷ x f :  (E + x Mr, 
-d(s  1 "p~'01) ) -+ (N+ x M2, -d(s  2 " p~02) ) is a R+-equivariant symplectic 
(bundle) map. Thus the correspondence M~-~Ma+, f~--~l ~ + x f i s a  
covariant functor from the category o f  contact manifolds into the 
category ofsymptect ic  manifolds. 

Moreover, for X E :TM there is a unique continuation of  X to a horizontal 
R+-invafiant vector field J~ E :T(R+ x 34). This defines a Lie algebra isomor- 
phism "~ : :TM i nv  :Thor( N+ x M) and "is the He algebra morphism correspond- 
ing to the group isomorphism Diff(M) -~ Autequ(N + x M), f ~ + l R  + x f 

2.8. Proposition. Let X E :TM. Then J~is a Hamiltonian vector field 
on (R+ x 3/, -d(s" p*O)) i f f X  E ~M. Thus "~ defines a Lie algebra 
isomorphism NM-+.g '  ~nvN x M from contact vector fields into the 
invariant Hamiltonian vector fields. 

For f g E °ShM we have {s. f o  p, s.  g o p} = s.  (f, g} o p, where the 
brackets on the left are the usual Poisson brackets on the symplectic manifold 
N+x M and the brackets on the right are given by 2.4. 

2.9. Proposition. Let .~h equ R + x M be all smooth functions 
f E  ° j R + x  M that are IR+equivariant and have the property )( _2 df  = 
0 for all X E CgM. Then the map o~hM-+ f f h  equ R + x M, f ~--~s • f o p 
is a Lie algebra isomorphism and we have ff;_l £-d(s. p*O) = 
d(s. f o p ) ,  i .e,  s. f o  p is the Hamiltonian of  Py. 

Remark. Having Z = Pt we get 2 _3 -d ( s .  p*O) = ds. F o r f E  ~ h M  Gf_] 
- d ( s .  p*O) = d ( f  o p)  .s. 

3. Line Bundles and Circle Bundles 

In the following, some relations between circle bundles and Hermitian line 
bundles are investigated. Standard facts concerning connections on principal 

a n d  vector bundles are found in Greub et al. (1973). 
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3.1. Defini t ion.  A line bundle  L = (L, n, M )  over a Banach manifold Mis  a 
one-dimensional complex vector bundle over M. Any line bundle (L, ~, M)  is 
associated with a principal C bundle L = (L, / r ,M, C) ,  where C : =  C\{0},  the 
mult!plicative group o.f nonzero complex numbers.  Because L = L x 6 C and 
L = L x 6 C ,  we get: L = L\zero section. 

3.2. Proposition. There is a one-to-one correspondence between line 
bundles L and principal C bundles L over a Banach manifold M. 

If  (L, ( -, • )) is an Hermitian line bundle,  (L, ( ", • }) is, as a ~ bundle,  associ- 
ate d with a principal circle bundle L c = (L c, n c, M,-~) over M, where T is the one- 
dimensional torus. For any positive r E E denote by  St (L ,  ( ' ,  • )) the r-sphere 
bundle of  (L, { ", .}): S t ( L , (  • , "))= (X m E L  I (Xm,Xm)= r2}.  Since L = L c x v C  
and Sr (L ,  { ", • }) = L c x z- S t (C) ,  we have for any r ~ ~+ an isomorphism of  
fibre bundles S t ( L )  ~ L c induced by the isomorphism between S t ( C )  and 1J- 

Note:  If  we identify qI- with S t (C) ,  the uni ty of  1/- is represented by  the 
complex number r. 

3.3. Proposition. There is a one-to-one correspondence between 
Hermitian line bundles (L, ( ' ,  ")) and principal circle bundies over a 
Banach manifold M. 

For any r E ~ there are isomorphisms L c ~ S t ( L )  inducing inclusions 

Z c ~-~ / L C-+L 

( I f  q :L c x C -+ L is the natural projection, we have ir = q ILC×Sr(c).) 

3.4. Notat ion .  Let P = (P, ~r, 34, G) be a principal G bundle over the Banach 
manifold M with Abelian group G. The action of  G A : G x P -+ P induces a Lie 
algebra morpb,ism ~. : L G  - ~ P ,  rT~-+~ with ~(Xm) = (d/dt )  [x m " exp ( t '  r/)] t= o 
for ~ E LG and Xm E P. ¢~ is called the f undamen ta l  vector  f ie ld induced by 

. ~ is vertical and G invariant. 
A L G  valued one-form a ~ ~2 l(p, LG)  is a connec t ion  f o r m  on P i f f  L 5a = 0 

and ~ _3 a = r7 for all ~ ~ LG. HorP:  = Kera  is the horizontal  bundle of  P and 
we have HorP O M  VerP = TP. We call H:  TP -+ HorP and V = H - 1 : TP ~ VerP 
the horizontal  and vertical projections. On any associated vector bundle E = 
(E, p, M)  o f  P, a induces a covariant derivative 7. : I ~ E  ~ Hom(TM, E) and a 
corresponding horizontal  bundle of  E. 

A Hermitian structure ( ' , .  } on a complex vector bundle E with complex 
connection V. is called V. aff ine (or V invariant) i ff  for all smooth sections 
o, o' ~ F~E:  d{o, ol) = {V.cr, o')+ {a, V o'}. The real part Re{ ' ,  ") o f a  Hermi- 
tian structure is a Riemannian, and the imaginary part I r a ( . ,  • } is a symplectic 
structure on E. These structures are connected by the complex structure 
Re{x, y } = Im(ix ,  y } for all x , y  E E. From the C finearity of  V. ( - ,  • } is 7. affine 
iff  R e ( . ,  • } is V. affine, i.e., iff  V. is a Riemannian connection. 

By standard results o f  Riemannian geometry (Flaschel and Klingenberg, 
1972; Greub et al., 1973) we have that {. ,  • } is 7. affine, iff  the corresponding 
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horizontal subspaces HorxE, x E E of  TxE are tangent to the sphere bundle 
Sr(E), r = [x l with Ix] := ( x , x )  1/2. Thus we obtain the following: 

3.5. Proposition. Let (L c, a e) be a principal circle bundle with con- 
nection and (L, g.) the corresponding line bundle with covariant 
derivative. For a Hermitian structure ( . ,  • } on L the following state- 
ments are equivalent: 
1. ( -, - ) is V. affine. 
2. HorxL C TSIXl(L)for allx E L  
3. For all r E ~+ the inclusion it: L c c_+ L is connection preserving: 

Tir(Horx L e) C Hor ir(x)L for all x E L c 

In that case HorL [St(L) is a horizontal bundle of  St(L) and Tir(HorL e) = 
HorL [St(L). 

For the proof  of  (3) note that ir = q [L c ,, st(e), where q : L c x C + L is the 
natural projection. 

3.6. Corollary. There is a one-to-one correspondence between princi- 
pal circle bundles with connection (L c, a e) and line bundles with 
covariant derivative and affine Hermitian structure (L, g., ( ' ,  • )) over 
a Banach manifold M. 

Moreover, for any positive r ~ ~+ there are imbeddings o f  bundles i~ :L c c+ 
L C-+L and Tit: HorL c ~ HorL c-+ HorL. r E ~+ gives rise to an isomorphism 

( - )  x,.  Ixml, 1-7  i r 

Thus by 3.6 HorL = tO ~ ÷ HorSr(L) and we can identit~¢ L = ~+ x L e. Note 
that (L, p, L e, ~+) is a (trivial) principal ( ~ + - )  bundle with d(log s) as 
natural connection form, where s :L -+ R +, x ~--> Ix I. The covering ~ -+ g and 
the imbedding T c-+C induce a Lie-algebra homomorphism ~ =  Lq]- -+ LC; = 
C, t >-> X- t, where 2zr/X is the period of  the covering. 

3.7. Theorem. Let (L c, a e) be a prindpal circle bundle with connec- 
tion form a e and let (L, g., ( ' ,  • )) be the corresponding line bundle 
with covariant derivative V. and V. affine Hermitian structure (.,  .). 
Then the unique connection form a on/:,, which corresponds (by 
association) to g., is given by 

a x = d(log Ix l) + (i/X) "p*ax c for x ~ L 

Conversely, i l L  is a principal ~: bundle with a connection form a and 
if L is the corresponding line bundle with covariant derivative V., then 
there exists a V. affine Hermitian structure ( . ,  • ) on L if and only if 
Rea is exact. In this case Ima defines (by restriction) a connection 
form c~ c on the corresponding principal circle bundle L c ~= SX(L). 
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Proof  We have onty to show, that a is a connection ~brm on i, and that 
Kerc~ = Urn.a+ Tir(HorLe). Let c = a + ib E C = L~;. Then dx = (d/dt)(e  et "x)t=o 
for all x E L and hence 

~ d a x = ~  log(eetx, eetx)l/21t=o +-x" P *ae e c r ' x  [t=o 

and by logarithmic differentiation 

= - -  a t  I /2  a t  1/2 i c~c{X, b [p(x)]) d (e ( x , x )  )/e ( x , x )  l t = o + ~  
dt 

=a+ib  

since c~ c is a connection form of L e. The rest of the proof lbltows from the 
decomposition 7)~ ~ TR + x TL c ~ TR + x VerL c @~4 HorLe and from 3.6. 

Ren~rk.  In the following we take X = t. In prequantization theory we have 
usually X = h = h/2n. 

3.8. Proposition. Let (L e, a~), i = 1, 2 be principal circle bundles over 
34i and (Li, V. i, ( ", • )i) the corresponding line bundles as above. Then 
by continuation (or, respectively, restriction) there is a one-to-one 
correspondence between connection-preserving T-equivalent bundle 
maps fe:  LC 1 -+ LCz, (f*~c2 = ael) and connection-preserving (;-equiva- 
riant isometric maps f :  LI -* Lz, f*V 2 = f ,  V I and f*l" 12 = I" 11. 

3.9. Proposition. Let (L e, c~ c) and (L, V., ( ' ,  ")) be as above. Then 
there is a one-to-one correspondence between T-invariant vector 
fields X e C ~rinvLe, that preserve the connection ~_xc ~e = 0 and 
(;-invariant vector fields X E.~'invL, that preserve connection LxC = 0 
and that preserve the metric l_xl • [ = 0. This correspondence is an 
isomorphism of  Lie algebras. 

The proofs of  3.8 and 3.9 are, by 3.6, trivial. 

3.10. Remarks. I f Z  = ~T is the fundamental vector field o f L  e With 1T 
the unity of  -f, then the unique continuation by L ¢ c'~L of  Z has the form 
Z =ih. 

4. Prequantum Bundles 

4.1. Definition: Let (M, co) be a symplectic Banach manifold. A prequantum 
bundle (PQB) over (M, co) is a principal circle bundle (L e, c~ e) with connection 
form over M such that 

co = - c u r v  a e (i.e., da  e = -he*co) 

The corresponding line bundle with connection and affine Hermitian structure 
will be called a (complex) PQB. 

4.2. Remarks. Complex prequantum bundles were introduced and investi- 
gated by B. Kostant (t 970) for the construction o f  the prequantization map. 
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The results 4.4, 4.7, and 4.8 of this section are due to B. Kostant, but we give 
other (partially simpler) proofs using results on contact manifolds. Because 
classification of bundles by Chern's classes does not require finite dimension- 
ality of the base manifold (Vaisman, 1973), the results of B. Kostant concerning 
the existence of PQB's over a symplectic manifold remain valid in the infinite- 
dimensional case. So we have the following theorem: 

4.2. Theorem (B. Kostant, 1970). A prequantum bundle over a 
symplectic manifold (M, co) exists iff co is integral. If co is integral, 
the class of all PQB's over (M, co) can be parametrized by the char- 
acters of the fundamental group of M. In particular, i fM is simply 
connected, there is one and only one PQB over (M, co) if co is integral. 

4.3. Definition. Morphisms and infinitesimal morphisms of PQB's are 
defined as in 3.8 and 3.9, respectively. In particular, 

Preq (L c, a c) := { f E  Aut LClf*eL c = a c, f Yequivafiant} 

NL c := {X E y'LCl ~_ x ac = O, X T  invariant) 

SplLC(M, co) := (g E Diff(M) [g is base map of a suitable fPreq(L  e, ac)} 

f L c ~ L c 

M ~ M  

Remark. By 3.8 and 3.9 Preq(L e, a e) is isomorphic to the group of 
connection-preserving isometric bundle automorphisms of the corresponding 
complex PQB (L, V., (- :" )), and N L  e is isomorphic to the Lie algebra of 
connection-preserving C-invafiant vector fields with isometric flow. 

Remark. Since elements of Preq(L c, a c) preserve curvature, we have 
SplLC(M, co) c Spl(M, co). 

I fM is simply connected SplLC(M, co)= Spl(M, co) (Kostant, 1.970 ). 

4.4. Theorem (Kostant, 1970). For a PQB (L c, a c) over (M, co) the 
following sequence of groups is exact and defines a central exten- 
Sion of SplL~(M, co) by 7I-: 

i ^ 

0 -+ T ~-~ Preq(L ¢, ac) _3 SplL(M, co) _+ 0 

e ~+ic ; ~ /  

where ic(x ) := e. x is the natural action of Y on L c and f i s  the base 
map off.  

Proof. This is an easy property of any principal G bundle with Abelian G. 

4.5. Proposition: Let (L c, c~ c) be a PQB over (34, co). Then (L c, ~e) is 
a contact manifold. 
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P r o o f  Ker c~ c = HorL c and Ker (-do~ c) = v e t  L c since dozc is horizontal and 
do~ c = -TrC*w is nondegenerate on horizontal subspaces. 

4.6. Corollary. Using the definitions of  Section 2 we obtain the 
following interpretation of  the objects introduced in Section 2: 
contact manifold = total  space L c 
contact form = connection form ~c 
presymplectic form = - d ~  e = ~re*co 
characteristic bundle = vertical bundle VerL e 
characteristic fibers = fibers of  the bundle L e 
quotient Le/characteristic fibration = base manifold M 

Remark.  Let f E  Diff(L c) be connection preserving: p*o~ c= c~ e. Then 
f *  Ker dc~ e = Ker d~ e, so f is fiber preserving. Moreover, f * Z  = Z since Z is 
uniquely determined by  c~ e, so f i s  also T equivariant. Therefore Preq (L e, ~c) = 
{ f E  Diff(L e) l f *~  c = c~c}. So we get additional correspondences: 

Cont (L e, ee) = Preq(L c, c~e) 
~ L  e (as defined in 2.3) = ~ L  c (as defined in 4.3) 
Z = P  1 Z = ]  (1 = unity of  T )  
o~hM ~ M  

4.7. Theorem (Kostant,  1970). Let (L c, ee )  be a PQB over (34, co). 
Then P: ~ M  -~ ~ L e ,  f ~--~ Pf  = Gj. + f o 7r c . Z is an isomorphism of  
Lie algebras. 

Proof'. This is a trivial consequence of 2.6. 

4.8. Corollary (B. Kostant, 1970). The following diagram of  Lie 
algebras is commutative and has exact lines: 

~a L C 

o , a " J  ,o j 

Application of  2.7 and 3.6 gives the following: 

4.9. Proposition. Let (L e, oz c) be a PQB over (M, co) and (L, c 0 the 
corresponding complex PQB. Denote b y p  :L -+ L e and s = [" [:L -+ 
R + the natural projections given by L ~ R + x L e. Then 

gZ : = - d ( s  2 • p ,~C)  

is a symplectic form on L. 

4 . t0 .  Corollary. Let Spl(L, ~2) be the symplectic g o u p  of  (L, g2). 
Then Preq(L, c 0 C Spl(L, gZ) and fo r any F.E Spl(L, g2) we have 
F E  Preq(L, ~) i f f F  is fiber preserving and C equivariant. 



456 G/3NTHER 

4.1 t .  Corollary. Denote by  o~L the Lie algebra of  global Hamilton- 
Jan vector fields on (L, ~2), and by ~t°invL all {; invariant Hamiltonian 
vector fields. Then 

~ L  = ~ i " v L  

4.12. Corollary. Define f o r f C  ~ ' M  f E  o~L by 

f ( x ) = ( x , x ) . f o # ( x ) = s Z ( x ) . f o i r ( x )  for a l lx  E L  

Then f i s  the Hamiltonian function of  Pf ~ ~/~ C ocgL. Moreover the 
flows of Pf ~ 9fL and df  # E $fM are #-related and "~ : ,~M -+ ~-g  is a 
Lie algebra morphism. (.~-L is by Poisson brackets defined by f2 a Lie 
algebra). 

The proofs of  4.10-4.12 follow directly from 2.7-2.9. 

4.13. Remark. ( a ) Q  = -d(s 2 " p,&C)is not a C-invariant form. The form 
-d(s" p,aC) defines a C-invariant symplectic structure on L. The results of  
4.10, 4.11 and 4.12 are also valid for this invariant symplectic form (if we 
def ineT= s. f o / r ) .  

(b) I f  we identify Vet L with 5*L, we have gZ IVerL × verL corresponds to 
the imaginary part of  the Hermitian structure (J,  ") on L, or, using VerL = 
L x C, to the natural symplectic structure on (2. This is true only for ~ and 
not for the Cdnvariant symplectic form of 4.13 (a). Therefore g2 seems to be 
more natural than the invariant sympIectic form. 

By the isomorphy of  VerL and/r*L the complex structure on L and the 
Hermitian metric induce a complex structure/-v and a Hermitian metric {", ")v 
on VerL and the imaginary part of  ( ", • )v is ~2 ]verL × VerL. 

Y 
Assume there exists an almost complex structure j on the symplectic mani- 

fold M, such that (M,], It)becomes an almost Kaehlerian manifold, where H 
is defined by H(x,y)  = L • oo(x,y) + co(]x,y) for all x ; y  c TM. Then by hori- 
zontal lifting HorL becomes an almost Kaehterian vector bundle. Define 

J:=iv+ir*j  and (( ", ")) := ( ' ,  ")v + #*H. 

Then (L, J, ((',")))" is an almost Kaehlerian manifold. So we have the following: 

4.14. Proposition. Let (M, ], ( ' ,  • )M) be an almost Kaehlerian manifold 
and co : = t i n ( ' ,  • )M be integral..Assume (L c, at)  to be a PQB over 
(M, co). Then the complex PQB L corresponding to L e becomes in a 
natural way an almost complex manifold. 

5. Projective Hilbert Spaces 

In this section we give an important example for a prequantum bundle 
over an infinite-dimensional manifold: the Hopf  fibration of a complex ][filbert 
space. 

Notation. Let (H,  ( ( ' ,  • ))) be a complex Hilbert space. ~ := ~ \(0}.  ~2 : = 
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tm (( •, - }) is a symplectic and S : = Re {(-, • )) a Riemannian structure on kf and 
for alt % 4 E H: 

(<SO, 4)) = S(SO, 4 ) +  ia(so, 4) and a(@, 4) = S(so, 4) 

i.e., H is a Kaehlerian manifold. Denote by .± the orthogonal complement of 
<< ' ,  • }> and for so ~ H define ~3 : = C" so and so± : : ( C ' ~)z. 

The projective Hilbert space H of H is defined by H : :  H / C .  H is a complex 
analytic manifold, charts are given by the projective representation:Fo!~o - E 
define ~b~o : (C" soo) ± -~ ~ \ ( C "  so--"-~o) -z, so ~-+C" (~ + soo).Then {(t2~J\(C "soo) -~, 
~ ) t  SOo E ~1 } is an holomorphic atlas o f  H. For ~b o C H the tangent.space 
T¢o H is given by T G H = {soo) x (C"  soo) ± c ½ x ~ .  Denote by/r  : H -+ ~ the 
canonical projection. Then (~ , / r ,  ~ ) i s  a principal C bundle. Note that TH = 
~xH.  

A connection form ~ on ( ~ ,  #, ~ ) is given by 

{(v, so}) for Go e T ~ =  ~]xH (i.e., v ~ H)  a(,9) :- ((so, so)) 
The corresponding decomposition of TH is 

T ~ g ~ x g  g V e r ~ x H o r ~ {  = ~ H x C x H o r H  

[ i~so77}5<(~'so>>' ) v ~ (so, v) ~ (pr e .  ~o(v), pr( e- ¢j-(v)) ~ ~SO, pr(e .  ~j-(v) 

where pru is the orthogonal projection onto the subspace U. Define the 
following tensors on H : 

. -  S(pr(c. ~o)Z(v), pr(c. ~-(w)) for v e, w~ E T 
~'(v~o, w~).- <<so, so>> 

1 
cS(v, w~) := ((so, so}- ~2(pr(c. e~-(v), pr(c. ~,)±(w)) 

1 1 

8~,)  - <<so, ~>> J ( @  = <<so, so---5> iv 

Then g, 05, 7a*e c invariant, g and & are horizontal and/,(Hor ~ )  C Hor g .  So 
g, 05, ~induce #-related tensors s, co,/" on g with co(/, -, • ) = s ( . , . ) .  

5.1. Lemma. Define the 1-form t~ on H by/3(v~o) = ~2(v, so)/((G so}- 
Then dfl = - ~ .  

Proof. 
1 

dfi~o = d A ~2(.,  so) - { { ~ ,  ~ )  

_ 1 ( s( -, so) A gZ(-,s0)) 
{(SO, SO}) fZ + 2 ((SO, SO>> = -&~ 
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since 

Re(( . ,  SO)) AIm(( so, - )) = ~ ((SO, so)) • g~l~ol × ~,s 

So ~ is exact and therefore co dosed and we obtain the following: 

5.2.Proposition. Let H be a complex Hilbert space. Then ~ = ~ ] C  
becomes a Kaehlerian manifold in a natural way. tn particular ( ~ ,  co) 
is a symplectic manifold. 

Denote by ~1 e : = H /~+  and p : IL~ -+ .~ e the natural projection. Then ~] e is a 
principal circle bundle over ~ .  Define rre: I~ e -+ H by rr e = #I ~c. The bundle 
(~1, p, H ~) is a prindpal (R+, - ) bundle and we can identify H e with the one- 
s p h e r e d  H S I (H)  = {SOE HI((~0, SO)) = 1}. 

The one-form 3 on ~ defined by 5.I is •+ invariant and horizontal, so 
there exists an unique one-form cg e on H e with p*c~ e =/3. Moreover, we get by 
differentiation the following: 

5.3. Lemma. a c is a connection form of  the bundle (~e ,  ~rc., ~ ,  T )  and 
= d(log (( . , . ))1/2) + i" p.¢~c 

5.4. Theorem. Let (H,  (( •, • ~)be a complex Hilbert space. Then 
(H e, ae) is a prequantum bundle over the projective Hilbert space 

= H/( ; .  The bundle (~ , / r ,  fl~)is the corresponding complex PQB. 

Proof. We have only to show that curvo~ e = --co. By 5.3 curv¢~ e = curva and 
by 5.1 dp*a e = d3 = - & .  So #*co = -p*da e : -de< 

Note. Any P sphere for P ~ R + of  H is a PQB over ~ .  
Caution!The corresponding line bundle ~ x +Cis not  the Hilbert space H. 

H is not  even a bundle over H. 

5.5. Proposition. The induced symplectic structure (see 4.9.) on the 
total space o f  the complex prequantum bundle ( ~ ,  7r, H)  coincides 
with the natural symplectic structure g2 on t~. 

Proof 

d (((SO, ~o))- p*c~ c) = (d((SO, SO))) A p*c~ e + ((so, SO))" p*d~ e 

fZl (c-  ~,)l × (c-  ~)l _ Aa(:  'so) - a  
= 2 s ( ~ ,  • ) ((so, so}} ((so, ~)) 

(Compare the proof of  5.I .)  

5.6. Corollary: The Kaehler structure on ~ is induced by the Kaehler 
structure on H, the base o f  the complex PQB (H,  7}, H). 

5.7. Proposition. Let X E 32H be a vector field, i.e., let X be a smooth 
(not necessary linear) operator g -+ H. Then X ~ yf}nv g =  ¢~giff  
(a) X(c .  SO) = c" X(so) for all ~ E  g and c e ~; and iff 
(b) ((X(so), qJ)) + ((SO, X(~J))) = 0 for all SO, ~ E H. (i.e., X is anti- 

symmetric.) 
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Proof. X is (;-invariant iff e * X  = X. c*X(•) = Tc - t  o X o. c(~) = c - 1  • X ( c "  ~ ) ,  

For all c E ~; and ~ ~ H. This proves (a). Let Ft:I  e x U -+ H be the (local) 
flow of X. Then Ft is ~;-equivariant iff X is C invariant. Ft is isometric iff for 
all~, ~ ~ H 0 =(d/dt)<<FtGFt~b>>=<<FtG ~>) + <<~, Ft~)),and any ~;-equi- 
variant flow is isometric iff it is symplectic. 

Remark. Because of 5.7 (a) any invariant vector field X E ~  inv ~ extends 
to a smooth operator X: H-> H by X(0) = 0. 

5.8. Remark. 7r1(H ) = 0, so Spl (~)  = Spl ~e(~) and (H c, a c) is the unique 
PQB over (H, co) (for dim H + 1). 

6. On Quantum Dynamics 

In this section we want to give a short outline of how prequantum bundles 
can be used to describe the dynamics of a general quantum system. For the 
foundations of quantum mechanics we refer to Jauch (1968). Our basic assump- 
tions are as follows: 

A quantum mechanical system is described by a complex Hilbert 
space H. The lattice ~ (H) of all closed subspaces of H is the logic 

"of the quantum system. Elements of the projective space H represent 
the pure states. Observables are represented by the (possibly unbounded) 
self-adjoint operators of H. 

The unitary operators are the isomorphisms of th e system. For simplicity 
we will restrict our attention in the following to smooth operators. All results 
of this section can be extended to unbounded operators by using the methods 
of Marsden (1968). 

Notation. 

U(I~I) : = the Banach Lie group of unitary operators 
Proj(H) := U(H)/T,  the projective group 
~A(H)  :---the symmetric operators of 

i ~A  (H) := the Lie algebra of antisymmetric operators 
N/ (H)  : = i S : A ( H ) / N  ( X "  Y i f f  X -  Y = i "  X-1 forX, Y ~ i  S :A(H)  

i 5:A(H) and ¢~]'(H) are the Lie algebras of U(H) and Proj(H). By definition 
the following sequences of groups or, respectively, Lie algebras are exact: 

o --, v ~ c:(•)  -* Proj ( ~ 0  -~ o 

o --, ~ ~-*i ~ A ( H )  - ' ~ / ( H ) - ~  0 

Note. Elements of Proj (H)project to morphisms of  ~ and elements of 
Ni(I~) to vector fields of I~. 

The following proposition is well known (Marsden, 1968): 
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6.1. Proposition. Let X be a complex linear vector field on H with 
complex linear flow F t. (I.e., X is a linear operator.) Then the following 
are equivalent: 

(i) X is Hamiltonian 
(ii) X__l ~ = d E  w i t h E :  H -~ ~ , E ( ~ )  = ~((iX~,~)) 

(iii) X E i ~.C~A (H),  i .e,  iX is symmetric 
(iv) F t is symplectic for all t ~ 
(v) F t is unitary for all t E R. 

The dynamics of the quantum system is given by the Schr6dinger operator 
~4 E ~ A ( H ) .  For h E ~+ we have "tq = i/~" Y for a complex linear Hamiltonian 
vector field X on H. Integral curves o f  X are solutions of  the Schr6dinger equa- 
tion and describe the time evolution of  the system: 

ih dJ-¢l = T4(~) 
dt I t=o 

Now consider the PQB (H, c 0 over (~ ,  co). Then we obtain by 5.7. the following: 

6.2. Lemma: 

U(H) = { F ~ P r e q ( g ) / F i s  additive} C Preq(H,  c 0 

i ~ A ( H )  = {X ~ N ( H ) I X  is additive} C ~ H  

So U(H)  consists of  all prequantum-morphisms, which map closed 
subspaces o f  H into closed subspaces, i.e., which are also morphisms 
of  the logic Jg° (H).  

6.3. Corollary. The following diagrams of  groups or, respectively, Lie 
algebras are commutative with exact lines: 

0 -----+ Y ~ " ' Sp l (~ )  ~ 0 Preq(H,  a) ." 

0 ~ Y • , U(H)  , P r o j ( H ) - - - - +  0 
(6.1) 

0 -----> E ~' , N¢I  , a f ~  - - - - *  0 
(6.1') 

Using the results of  Sections 4 and 5 we obtain the following (formal) corres- 
pondence between the structure of  a (time-independent) classical mechanical 
system and a quantum mechanical system: 



PREQUANTUM BUNDLES 461 

Classical sys tern 

Phase space (M, co) 
Hamiltonian systems ~ M  
Logic: ~(M)  (Borel sets of M) 
Observables: ~ 'M 
Canonical transformations: 

Spl(M, co) = Spl(M, co) C3 
autN(M) 

tlamittonian function f E  ~ M  

Hamiltonian vector field Xf 
PQB (I2, ~) over M 

(if co is integral) 
Spl form of £:g2 (see 4.9) 

ttamiltonian of Pf 
f =  s2 . f o ir (see 4.12) 

Time evolution: F. flow of Xf: 
d 
d7 ,~(m)I~=o = xAm), 

rn ~ M  

is 7? related to F with 
d -  
d-~tFt(xm)lt=o = Pj'(Xrn ) 

(see 4.12) 

Quantum system 

Space of pure states (~ ,  w) 
Hamiltonian Systems on H: JgH 
Logic: ze(H) c~ (H)  

iSPA(H ) CgaH = . f  H 
Proj(H) g Spl(H, co) C~ Aut ~q~(H) 

Expectation value E: H -+ R 

X~ = dE # on ~ (l-t Schr6dinger Op.) 
Hilbert-PQB (~ ,  a) 

£Z = Im((-, • )) (see 5.5) 
1 e~=Xe=~ 

Hamiltonian of X~ 
E=<< • , -)) 'E,~b->(1/2h).  ((H~o,¢)) 

flow of X/~ iff 
d ^  

a5 Ct@)lt=o = J ~  @) 

¢ is/r-related to ~ with 
d 

ih" d-- 7 Ct@)ft=0 = ih " XE(~O) = ]q@) 

(Schr6dinger equation) 

7. The tS'equantization Functor 

The main application of prequantum bundles is the prequantization 
procedure of B. Kostant (1970). Using the Hitbert PQB of Section 5 we give 
a functoriaI definition of prequantization. 

Denote by -I]--PQB the category of prequantum bundles with morphisms 
as defined in 4.3. By the results of Section 4 T-PQB is equivalent to the cate- 
gory (;-PQB of all complex prequantum bundles and to the category L-PQB o f  
all line bundles with covariant derivative V, V-affine Hermitian structure and 
symplectic curvature. The subcategories of finite dimensional prequantum 
bundles will be denoted, respectively, by -~- PQB f, ~;-PQB I, L-PQB f. 

Let L e = (L~, c~ e, M/) C ~--PQB f and L i = (Li, V i, (" , ")i) the corresponding 
f C C C line bundles ofL-PQB, i = 1,2. For any PQB morphism f : Li  -+ L2 the induced 

f 
L I ~ 12 

Ml 7 M 2 
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L-PQB morphismf:L1 --> L 2 restrict on each fiber of L1 to an isomorphism 
.tom : ~1 (m) --> 7r~2(f(m)). f i s  a PQB isomorphism iff the base map f:M1 --> M2 
is a symplectomorphism. 

Therefore we can define the contravafiant section functor P on L-PQB: 
F(L) := {o:M-+ L Io section} and F(f )  := f* :  F(L2) --> F(L1) , f*o(m)  := 
fm 1 (o [f(m)]) for f :  L1 ~ L2, m E 3/1; o E F(L2). 

For any finite-dimensional PQB (L c, a c) over (M, co) the form p = co (aimM)/2 
is a natural volume on M (the Liouville measure). Using this volume and the 
affine Hermitian structure we can define on the category L-PQB ~ the Hilbert 
space valued LLsection functor 

FL~(L) : = {o~  P(L) l fM(a(m) ,  o ( m ) ) p ( m )  E E}/N=:  H(L) 

FL;(f )  := f*  [restricted on H(L2) ] 

for L = (L, V, ( ' , " ) )  E L-PQB f over (M, co) and f :  L1 --> L2. (N denotes the 
space of all sections, which vanish except on a set of measure zero.) 

7.1 .Proposition: Let (Li, V{ ( ' ,  ' )i) EL-PQ Bf, i = 1,2 a n d f : L  1 -->L 2 
a PQB morphism. Then f*:  H (12 2) -~ H(L1) is a partial isometry, i.e., 
f *  I(Ker;*)±: (Kerf*) ± -+ H(L1)is an isometry. 

Proof  For the Hermitian structure in H (L~) we have 

(( f *o , f *o i ) l  = fM~ (fro 1 o a o f (m.) , fm 1 o o o f (m) )  p l (m)  

= f?(M,)(a(m), a(m))'P2t?(M~)(m) 

since f i s  symplectic and therefore volume preserving. 

Kerf* = (a E H (L:) I cr o f = 0 } = {o E ~ (L2) I e If(M,) = 0 } 

(Neff*) ±= {o~ H(La)I OlM~\fi(M,) = 0} 

So ((a, a)) 2 = (( f*o, f*o))  1 iff a @ (Kerr*) I. 

7.2 Definition. K(f):  H(Li)  --> H(L 2), K( f ) :  = (f*l(Kerf*)±) -1 
K(f)  is a C-linear isometric imbedding H(L 1). c_> H(L2 ) and therefore a sym- 
plectic map. Let /£(f)  be K(f)  r/r~estricted on H(L t)  = H(L 1)\ {0}. Then/~(f) 
project to a symplectic map K(f): ~(L 1) --> ~(L2),  so / ( ( f ) :  (I~1, #0,,, ~1) --> 
(~2,/r~z, H2)with Hi: = H(Li) is a PQB m0rphism, Moreover, K ( f o  g) = 
K( f )  o K(g) for PQB morphisms f and  g. This gives the following: 

7.3. Proposition./(  : L-PQB f -~ C -PQB is a covariant functor. Byfequiva- 
lence of L-PQB and C-PQB/£ is also a covariant functor C-PQB 

-PQB. 

7.4. Definition. The functor K: C-PQB f ~ C-PQB will be called the Kostant 
functor. 

- - ~  t . t f , Remark. If)~:L L, t = 1,2 and L, L E L-PQB are PQB morphlsms over 
the same base m a p g : M - ~ M  then by 4 . 4 f  t = e. f2 for a c ~ T, and so K(f l )  = 
K(f2), 1.e., the reduced symplecnc map H (L) -+ b] (L) only depends on the 
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base map g a n d - o f  course -on  L and L'. Define ~7(g) : 7 K~fl) = K~2).  This 
definition depends on the bundles L and L', therefore K is not a functor. We 
obtain by 4.2 and 4.3 only for the simply connected case the following: 

7.5. Proposition. The Kostant functor K induces a covariant functor 
/£ from the category of simply connected finite-dimensional symp- 
lectic manifolds (M, ~ )  with integral w into the category of  symp- 
lectic manifolds by  K(M, co) : = ~ and/£(g)  : = /£( f ) ,  where L is 
the unique PQB over (M, Lo) and ( i s  a PQB morphism over g. 

Let (L, a)  be a PQB f over (M, co). Then K:  Preq(L, a)  -+ Preq(~(L) ,  a ~ ) i s  a 
group morphism. The induced infinitesimal morphism will be the prequantiza- 
tion map of  Kostant. To prove this we need the following: 

7.6. Lemma. L e t  (L, a) be a PQB over (3/, co) and L = (L, V, ( ' ,  • )) 
the corresponding line bundle, q : L x C -+ L 

L x C  q , L  

L , M  

the natural projection and q *: P=L --> ~'equ(L, C ) t h e  induced iso- 
morphism, Then for any f C  ~ M  and cr ~ P=L  

Lefq*cr = q*(V, af#o + ih f  . o) 

hoof. es= Gr+ f o ~. Z -- a~+i5, yo ~ by 3.10. 

k f~ .  f o  ~q*o = ih '  f o n .  L~q*e=if i -  f o # . q * e = q * q h .  f " o) 

since q*o is ~; equivariant. LGrq*e = q*(Vug#e) by definition of V (see Greub 
et al., 1973). Let Pc(L)  be th? space of  all C = sections with compact support. 
Y c ( L )  is a dense subset of H(L)  =: H,  so the map ~ M ~  ~ L  ~ EndP=L,  
f ~ Vaf# + ih" (def ines  a map k:  ~ M - +  E n d  H. I f i S ~ A ( H ) i s  the spac e of  
al l -possibly u n b o u n d e d -  antisymmetric C-linear operators of  H,  then 
k( f )  E i 5CA(H) (since the Hermitian structure ( . ,  • ) on L is V affine). More- 
over, for all f, g E ~ 'M: k ( ( f ,  g))  = [k( f ) ,  k(g)] (commutator)  by 7.6 and 2.6. 
So we have the following: 

7.7. Proposition: k : o~M ~ i ff°A (I/]), f F-+ Vaf# + ih- f is a Lie algebra 
homomorphism induced by the group morphism K:  l~eq (L, o 0 
P req (~) .  in particular k ( f )  ~ ~ i f  k ( f )  is bounded, k is called the 
Kostant prequantization map. 

Ackn o wledgrn en ts 

I wish to thank the members of tile group "Geometric Quantization" at the Technische 
Universit//t Berlin under guidance of K. E. Hellwig for helpful discussions. I should also 
like to thank K. E. Hellwig, H. HeL~, and R. Zavodnik for reading the manuscript and for 
critical remarks. This work is a part of the author's thesis at the Freie Universitgt Berlin, 



464 GUNTHER 

References 

Abraham, R. and Marsden, J. E. (1967). Foundations of Mechanies, Benjamin, Reading, 
Massachusetts (1972). 

Flaschel, P. and Khngenberg, W. (1972). Riemal~nsche Hilbertrnannigfaltigkeiten, 
Periodische Geoddtische, Springer, Lecture Notes in Mathematics 282. 

Greub, W., Ilalperin, S. and Vanstone, R. (1973). Connections, Curvature and Cohomology 
II, Academic Press, New York/London. 

Gawedzki, K. and Szapiro, T. (1974). Reports on Mathematical Physics, 6,477. 
Hermann, R. (1973). Topics in the Mathematics of  Quantum Mechanics (Inlerdisciplinary 

Mathematics VI), privately printed, U.S.A. 
Jauch, J. M. (1968). Foundations of Quantum Mechanics, Addison-Wesley, Reading, 

Massachusetts. 
Kostant, B. (1970). "Quantization and Unitary Representations," in: Lectures in Modern 

AnalysisandApplications [II, Taam, C. T. ed., Springer Lecture Notes in 
Mathematics, 170. 

Kostant, B. (1973). Line Bundles and the Prequantized Schrodinger Equation, Symposia 
Math. 

Marsden, J. E. (1968). Archive for Rational Mechanics and Analysis, 28, 362. 
Souriaw, J. (1970). Structure des Systemes Dynamiques, Dunod, Paris. 
Vaisman, i. (1973). Cohomology and Differential Forms, Marcel Dekker, Inc., New York. 


