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Abstract

Principal circle bundles with connection and symplectic curvature over Banach manifolds
are investigated. Using results on contact manifolds alternate proofs for some results of
B. Kostant are given and a symplectic structure for the total space of the corresponding
principal ¢\ {0} bundle is constructed. As an example, these results are applied to the
projective fibration of a complex Hilbert space. This gives close relations between the
geometric formulation of classical and quantum dynamical systems. As another applica-
tion, a functorial construction of the prequantization procedure of B. Kostant is given.

1. Introduction

In the symplectic formulation of classical Hamiltonian mechanics pure
states are represented by elements of a symplectic manifold (M, ). Observ-
ables are given by continuous functions on M. The space FM of all smooth
observables isa Lie algebra under Poisson brackets. The symplectic maps are
the isomorphism of the system, and dynamics is given by flows of Hamiltonian
vector fields.

A prequantum bundle L¢ over a symplectic manifold (M, «)is a principal
circle bundle over M with curvature . These bundles have been introduced
by B. Kostant (1970) for the construction of the prequantization map, which
is a representation of the Lie algebra #M|by antisymmetric operators on a
Hilbert space. B. Kostant (1970) showed that dynamics of a mechanical system
(M, w) can be expressed in terms of the prequantum bundle. This in turn may
be interpreted as mechanics with phase factors. In particular, there is an iso-
morphism between %M and the Lie algebra of connection-preserving vector
fields (ine infinitesimal prequantomorphisms) on the prequantum bundle L°,

In the Hilbert-space formulation of quantum mechanics pure states are
unit rays of a Hilbert space [, i.e., elements of the complex projective Hilbert
space H =H/C. Dynamics of the quantum system is given by the Schrodinger
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448 GUNTHER

equation, which describes the flow of a Hamiltonian vector field (the Hamilton
operator) on H with the natural symplectic structure.

In this paper we investigate prequantum bundles over possibly infinite-
dimensional manifolds and show, as an important example, that the projective
fibration of a Hilbert space is a prequantum bundle. This fact enables us to give
a unified geometric description of classical and quantum dynamical systems.

In Sections 2 and 3 we prove some necessary results on contact manifolds
and show the equivalence between torus bundles with connection and certain
principal C\{0} bundles. The next two sections are the main part of the paper.
In Section 4 we investigate the structure of prequantum bundles over Banach
manifolds. Using the results of Section 2, we give alternate proofs for some
of the results of B. Kostant (1970). Moreover, we construct a symplectic form
on the total space of the complex prequantum bundle such that the connection-
preserving vector fields are just the invariant Hamiltonian systems.

In Section 5 we show that the projective fibration of a Hilbert space H defines
a prequantum bundie, which induces the natural symplectic structure on H.

We apply these results in the last two sections. In Section 6 we show the
close relations between the geometric structure of classical and quantum
dynamical systems, if we use the unified description in terms of prequantum
bundles. '

As another application we give in Section 7 a functorial construction of the
prequantization procedure of B. Kostant in the category of prequantum
bundles.

The differential geometric notation in this paper is, although slightly modi-
fied, based on the book of Abraham and Marsden (1967). In particular we use
the following symbols: TM is the tangent bundle of M; Tf is the tangent map
of f:M = N smooth; T'M is the cotangent bundle (we use the ||| topology on
the dual space of a Banach space); #M is the ring of real smooth functions
on M;Z M is the Lie algebra of smooth vector fields on M; X'M=Q M are
the one-forms on M; Ly is the Lie derivative; _lis the inner product; #M are
the Hamiltonian vector fields on M; LG is the Lie algebra of the Lie group G;
hor = horizontal, ver = vertical, inv = invariant, equ = equivariant, C = C\{0},
and R=R\{0}.

2. Contact Manifolds

Contact structures are needed for the construction of the prequantization
miap. In this section some fundamental facts about contact manifold are
presented.

2.1. Definition. Let M be a Banach manifold, ¢ € Q! M a one-form on M.
Define the presymplectic form w := —d¥¢ and the induced musicalic morphisms
WP TM = T'M, v,,,—> 6Xv,,,7). © is called a contact form iff for all m € M.

(2) dim Kerw?(m) = codim Imw®(m) = 1
{(b) Kerd@;, Kerw =TM
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For any contact manifold (M, &) the characteristic bundle CM := Kerw
defines a one-dimensional fibration of M, the characteristic fibration. Sections
in CM are called characteristic vector fields. Denote by €M the local one-
dimensional #FM module of characteristic vector fields.

2.2. Remark. There is a vector field Z €€M uniquely defined by
ZJw=0 and Z_1d=1
Z is called the Cartan vector field and is a base of €M,

For two contact manifolds (M;, &), 1= 1, 2 contact morphisms are smooth
maps [:M; - M, with f*9, = 0,. Note that contact morphisms preserve
characteristic fibers and TA(CM,) C CM, for any contact map f. In particular
Tf(Z(m)) = Z(f(my)) for my € M;. Denote by CtMf the category of contact
manifolds with contact morphisms.

2.3. Notation. Let (M, ®) be a contact manifold. Cont(#M, 8): =
{r< Diff (M)|f*9 = 9} the (special) contact group. M = (X € XM Lx9 =0}
the (special) contact vector fields. FhM = {f € FM | Lxf=0 for all
X € EM}.

Remark: (a) #M is a Lie subalgebra of ZM, and we can interpret M as
the formal “Lie algebra” of Cont (M, ), since any X € #M has a flow of
contact isomorphisms.

(b} FhM consists of all real functions on M that are constant on the
characteristic fibers of M. For f & FM we have f€ FhM iff for all m € M.
df;, € ImwP(m).

2.4. Definition. Let (M, §) be a contact manifold and f, g € FhM.
(a) Gy&ZM is uniquely determined by Gy | w=df and Gy 19 =0.
(b) Pr€ &M is uniquely determined by Py _{w=dfand Py 1§ =1
{c) The Poisson brackets of f and g are defined by

f,8y:=G; 1G, Jw

2.5. Remarks. (a) For f€ FhM L =dGy | w =0 so0 Gy has a pre-
symplectic flow. Gy is the “Hamiltonian” vector field of f.

(b) We have the formula Pr=Gp+f- Z

(C) d{f;g} = [Gf: Gg] dw.

2.6. Theorem. Let (M, &) be a contact manifold. The map P. defined
by 2.4(b) is an isomorphism of Lie algebras P.: FhM - PM with
18 (XX _1 9) as inverse map,

Proof. for f € FhM we have Lp & =P 1d6 +dPr _19=0,s0 Pr € PM.
Py 19 = fby definition. To show Pgu s =X for all X € M we use the
decomposition of 2.1.(b): Py 13 19 =X _1 9 by definitionand Py _; 3 1dd=
~d(X 18)= Ly +X Jdo=X _1d0,since X € PM. Thus X and Py _, »
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have the same components. This proves - _] & to be the inverse of P.. By definition
Ple}y 10 = {f,g}so-_10isa Lie algebra morphism.

[ Bl 10 =Lp Py 10={fg}=Pisg} 10
and
[P Bl Jw=dPy 1By Jw=dif,g} =Pz d e

So Pz, ¢} = [Py, ] This proves 2.6.

For a contact manifold (M, 9) we define Mg+ := R*x Mand p: Mg+ > M,
§: Mg+ - R* the natural projections. Then (Mg*, p, M, R*) is a principal
(R*, - ) bundie with d(log s) as the natural connection form. The two-form
—d(s - p*8) = —ds A p*® — s - p*dd is.nondegenerate and R* equivariant. So
we have the following:

2.7. Proposition. (R* x M, —d(s - p*®)) is a symplectic manifold.

If f: (My, 8;) > (M,, §,) is a contact morphism, 1g+ x f: (R* x My,
—d(s; - p¥dy)) > (R* x My, —d(s, - p5S,))is a R*equivariant symplectic
(bundle) map. Thus the correspondence Mr> Mg+, fr>1g+x fisa
covariant functor from the category of contact manifolds into the
category of symplectic manifolds.

Moreover, for X € &*"MN there is a unique continuation of X to a horizontal
R™-invariant vector field X € Z(R* x M). This defines a Lie algebra isomor-
phism ~: M - Z' > ( R* x M) and *is the Lie algebra morphism correspond-
ing to the group isomorphism Diff (M) = Aut® ™ (R* x M), f>1g+ x f.

2.8. Proposition. Let X € M. Then X is a Hamiltonian vector field
on (R* x M, ~d(s - p*9))iff X € M. Thus ~ defines a Lie algebra
isomorphism M - # '™ R x M from contact vector fields into the
invariant Hamiltonian vector fields.

Forf,g€ #hM we have {s- fop,s-gop}=s- {f,g} © p, where the
brackets on the left are the usual Poisson brackets on the symplectic manifold
R* x M and the brackets on the right are given by 2.4.

2.9. Proposition. Let Fh*R* x M be all smooth functions -

fEF R*x M that are R* equivariant and have the property X _I df =
-0 for all X € ¥M. Then the map FhM —+ Fh* VR x M, ft>s-fop

is a Lie algebra isomorphism and we have ?f._JN-—d(s s pEH) =

d(s- fop),ie., s fopisthe Hamiltonian of Pr.

Remark. Having Z = P we get Z _| —d(s - p*9)=ds. For f € FnM Grl
~d(s- p*9)=d(f°p)-s.

3. Line Bundles and Circle Bundles

In the following, some relations between circle bundles and Hermitian line
bundles are investigated. Standard facts concerning connections on principal
and vector bundles are found in Greub-et al. (1973).
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3.1. Definition. A line bundle L = (L, m, M) over a Banach manifold Mis a
one-dimensional complex vector bundle over M. Any line bundle (L, m, M) is
associated with a principal € bundle L = (L, 7, M, C), where C:= C\{0}, the
multiplicative group of nonzero complex numbers Because L = L x ¢ C and
L=1x¢C,we get: [ = L\zero section.

3.2. Proposition. There is a one-to-one correspondence between line
bundles L and principal C bundles L over a Banach manifold M.

If (Z,<-,-)is an Hermitian line bundle, (L, (-, - )) is, as a Z bundle, associ-
ated with a principal circle bundle L° = (L°, 7n°, M, T) over M, where T is the one-
dimensional torus. For any positive ¥ € R denote by S'(L,{", -)) the r-sphere
bundle of (L,{", *)): ST(L,{", )= (X €L |{Xp, Xy =72}. Since L=L° x +C
and S"(L,{-,-) =L x +8"(C), we have for any € R* an isomorphism of
fibre bundles (L) - L€ induced by the isomorphism between S(C)and T

Note: If we identify T with S7(C), the unity of T is represented by the
complex number .

3.3. Proposition. There is a one-to-one correspondence between
Hermitian line bundles (L, (-, -)) and principal circle bundles over a
Banach manifold M.

For any r € R there are isomorphisms L¢ - $*(L) inducing inclusions

Sy
(If g:L° x C > L is the natural projection, we have i, = g |z¢x s7(c)-)

3.4. Notation. Let P= (P, n, M, G) be a principal G bundle over the Banach
manifold M with Abelian group G. The action of G 4 : G x P~ Pinduces a Lie
algebra morphism * : LG = X P, n—17) with 71(x,,,) = (d/dt) [x,, -exp (¢ Mls=0
for n € LG and x,,, €P. 71 is called the fundamental vector feld induced by
7 .- fis vertical and G invariant.

A LG valued one-form « € QY (P, LG) is a connection form on Piff L 70=0
and f Ja =7 forallm € LG. HorP: = Kera is the horizontal bundle of P and
we have HorP @y, VerP = TP. We call H: TP > HorPand V=H — 1: TP ~> VerP
the horizontal and vertical projections. On any associated vector bundle £ =
(F, p, M) of P, a'induces a covariant derivative V. : I'"E » Hom(7TM, £) and a
corresponding horizontal bundle of E.

A Hermitian structure {-, -) on a complex vector bundle £ with complex
connection V. is called V affine (or V invariant)iff for all smooth sections
0,0 €T E: d{o, 0')={V0, 0+ {6, V ¢). The real part Re{- , -) of a Hermi-
tian structure is a Riemannian, and the imaginary part Im(-, -} is a symplectic
structure on E. These structures are connected by the complex structure
Re(x, y>=Im{ix, y) for all x, y € E. From the C linearity of V_ (-, -}is V affine
iff Re{-, -)is V_affine, i.e., iff Vv is a Riemannian connection.

By standard results of Riemannian geometry (Flaschel and Klingenberg,
1972; Greub et al., 1973) we have that (-, -)is V. affine, iff the corresponding
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horizontal subspaces Hor E, x € E of T, F are tangent to the sphere bundle
ST(E), r = | x| with | x| := (x, x)!"% Thus we obtain the following:

3.5. Proposition. Let (L¢, o) be a principal circle bundle with con-
nection and (£, V) the corresponding line bundle with covariant
derivative. For a Hermitian structure (-, -) on L the following state-
ments are equivalent:

1. (-, -7is V affine.

2. Hor, L C TS"*(L)forallx €L

3. For all r € R* the inclusion 7,: L° > L is connection preserving:

Ti,(Hor, L) C Hor, (L forallx € L¢

In that case HorL [g7(y,) is a horizontal bundle of §"(L) and Ti(HorL¢)=
HorL ‘SY(L)'

For the proof of (3) note that i, = q |, x s%c), Where g:L° x C > L is the
natural projection.

3.6. Corollary. There is a one-to-one correspondence between princi-
pal circle bundles with connection (L€, o) and line bundles with
covariant derivative and affine Hermitian structure (L, V,, (-, -)) over
a Banach manifold M.

Moreover, for any positive € R* there are imbeddings of bundles 4,: L°
L <> L and Ti,: HorL¢ > Hor I “>HorL. r € R™ gives rise to an isomorphism

L~ R*x L, x,, — jxmf,—fﬂ r
[Xpm |

Thus by 3.6 HorL = Ug+ HorS"(L) and we can identify L =R*x L. Note
that (L, p, L¢, R¥)is a (trivial) principal (R", - ) bundle with d(logs)as
natural connection form, where s :L -+ R x+>|x|. The covering R~ T and
the imbedding T~ C induce a Lie-algebra homomorphism R=LT - LC =
C,t >\~ t, where 2m/A is the period of the covering.

3.7. Theorem. Let (L°, o€} be a principal circle bundle with connec-
tion form «° and let (Z, v, (-, -) be the corresponding line bundle
with covariant derivative V. and v affine Hermitian structure ¢, -).
Then the unique connection form o« on L., which corresponds (by
association) to V., is given by

a, =d(log |x]) + (i/N) - pFos forx €L

Conversely, if L is a principal C bundle with a connection form « and
if L is the corresponding line bundle with covariant derivative V, then
there exists a V_affine Hermitian structure (-, -)on L if and only if
Rea is exact. In this case Ima defines (by restriction) a connection
form of on the corresponding principal circle bundle L¢ = SY(L).
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Proof. We have only to show, that « is a connection form on L and that
Kera = U,g g Ti(HorL®). Let c=a +ib € C=LC. Then & = @d/dt)(e* -x)=0
for all x € L and hence

. d i d
¢ o, = 5 log (e, e )M 2|, o + 3 p*o’ (E‘ e -x) lr=0
and by logarithmic differentiation
d 2PN
=5 (00, VD)™ (x, x)M P g + % a“ - b pOot}

=q+ib

since a“ is a connection form of L¢. The rest of the proof follows from the
decomposition TL = TR* x TL¢ = TR* x Ver L¢ @, Hor L€ and from 3.6.

Remark. In the following we take A = 1. In prequantization theory we have
usually X =% = h/2n.

3.8. Proposition. Let (L{, of),i= 1, 2 be principal circle bundles over
M;and (L;, ¥, (-, *);) the corresponding line bundles as above. Then
by continuation (or, respectively, restriction) there is a one-to-one
correspondence between connection-preserving T-equivalent bundle
maps f: LS ~ LS, (f*a§ = o$) and connection-preserving C-equiva-
riant isometric maps f:L; = Lo, f¥V? =f*yland f*- 1, = |-,

3.9. Proposition. Let (L, «)and (L, V,{", -7} be as above. Then
there is a one-to-one correspondence between T-invariant vector
fields X© € Z'™L°, that preserve the connection Lxc*® = 0 and
C-invariant vector fields X € 2L, that preserve connection Lyc =0
and that preserve the metric Lx|-|= 0. This correspondence is an
isomorphism of Lie algebras,

The proofs of 3.8 and 3.9 are, by 3.6, trivial.

3.10. Remarks. If Z =17 is the fundamental vector field of L¢with 17
the unity of T, then the unique continuation by L L of Z has the form
Z =ih.

4. Prequantum Bundles

4.1. Definition: Let (M, w) be a symplectic Banach manifold. A prequantum
bundle (PQB) over (M, w) is a principal circle bundle (L¢, &) with connection
form over M such that

w = —curva® (i.e.,dof = —n*w)
The corresponding line bundle with connection and affine Hermitian structure
will be called a (complex) PQB.

4.2. Remarks. Complex prequantum bundles were introduced and investi-
gated by B. Kostant (1970} for the construction of the prequantization map.
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The results 4.4, 4.7, and 4.8 of this section are due to B. Kostant, but we give
other (partially simpler) proofs using results on contact manifolds. Because
classification of bundles by Chern’s classes does not require finite dimension-
ality of the base manifold (Vaisman, 1973), the results of B. Kostant concerning
the existence of PQB’s over a symplectic manifold remain valid in the infinite-
dimensional case. So we have the following theorem:

4.2. Theorem (B. Kostant, 1970). A prequantum bundle over a
symplectic manifold (M, w) exists iff c is integral. If « is integral,
the class of all PQB’s over (M, w) can be parametrized by the char-
acters of the fundamental group of M. In particular, if M is simply
connected, there is one and only one PQB over (M, w) if w is integral.

4.3. Definition. Morphisms and infinitesimal morphisms of PQB’s are
defined as in 3.8 and 3.9, respectively. In particular,

Preq (L%, o) 1= {f € Aut L°} f*a€ = of, f Tequivariant}
PLC = {X € ZLE|L ya© =0, XT invariant}
SpI““(M, w) := {g € Diff (M) | g is base map of a suitable f Preq(L¢, «“)}

Lc’_—;‘—*) LC

Lo,

M— M

Rewmark. By 3.8 and 3.9 Preq (I°, «°) is isomorphic to the group of
connection-preserving isometric bundle automorphisms of the corresponding
complex POB (L, V,{-, -)), and 2L is isomorphic to the Lie algebra of
connection-preserving C 4nvariant vector fields with isometric flow.

Rgmark‘ Since elements of Preq{L¢, o°) preserve curvature, we have
SpIE(M, w) C Spl(M, w). . -
If M is simply connected Spi= (M, w) = Spl(M, w) (Kostant, 1970).

4.4. Theorem (Kostant, 1970). For a POB (L€, a©) over (M, w) the
following sequence of groups is exact and defines a central exten-
sion of SplL (M, w) by T:
i R
0T “>Preq(L® a) > Splt(M, w)—~> 0
¢ i, f—=f

where i,(x) 1= ¢ x is the natural action of T on L° and fls the base
map of f.

Proof. This is an easy property of any principal G bundle with Abelian G

4.5. Proposition: Let (L¢; ) be a PQB over (M, w). Then (L€, o) is
a contact manifold. '
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Proof. Ker a° = Hor L and Ker (—da®) = Ver L€ since da® is horizontal and
da® = —~n°*¢) is nondegenerate on horizontal subspaces.

4.6. Corollary. Using the definitions of Section 2 we obtain the
following interpretation of the objects introduced in Section 2:
contact manifold = total space L¢

contact form = connection form o®

presymplectic form = —da‘ = 7%

characteristic bundle = vertical bundle Ver L¢

characteristic fibers = fibers of the bundle L

quotient L°/characteristic fibration = base manifold M

Remark. Let f€DIff{(L°) be connection preserving: f*a°= o, Then
7* Kerda® = Kerda®, so f is fiber preserving. Moreover, f*Z = Z since Z is
uniquely determined by o, so fis also T equivariant. Therefore Preq (L5, ) =
{f€DIff(L°)|f*a® = a°}. So we get additional correspondences:
Cont (L°, &%) = Preq(LF, a°)
PLE (as defined in 2.3) = 2L (as defined in 4.3)
Z=P Z=1 (1 = unity of T)
FhM FM

4.7. Theorem (Kostant, 1970). Let (L€, &) be a PQB over (M, w).
Then P: FM ~ PL, [ —=>Pr=Gp+fo n° - Zis an isomorphism of
Lie algebras.

Proof. This is a trivial consequence of 2.6.

4.8. Corollary (B. Kostant, 1970). The following diagram of Lie
algebras is commutative and has exact lines:

PLE
/ {P\
\ /

Application of 2.7 and 3.6 gives the following:

4.9. Proposition. Let (L, «°) be a PQB over (M, w) and (£, @) the
corresponding complex PQB. Denote by p: L - L ands=|-|: L ~
R* the natural projections given by L = R* x L€, Then

Q :=—d(s* - p*a®)

is a symplectic form on L

HM — 0

4.10. Corollary. Let Spl(L, ©2) be the symplectic group of (L, Q).
Then Preq(L, &) C Spi(L, ) and for any F € Spl(L, ) we have
F&Preq(L, a) iff F is fiber preserving and C equivariant.
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4.11. Corollary. Denote by #L the Lie algebra of global Hamilton-
jan vector fields on (L, Q), and by #"™L all C invariant Hamiltonian
vector fields. Then

L=A"™]
4.12. Corollary. Define for f€ FM f€ FL by
FO)=(x,x) fow(x)=s%(x)fo 7(x) forallx €L

Then f is the Harmltoman function of Pr & PL C #L. Moreover the
flows of Pr& AL and df € #M are w-related and *: FM ~ FL is a
Lie algebra morphism. (&L is by Poisson brackets defined by £ a Lie
algebra).

The proofs of 4.10-4.12 follow directly from 2.7-2.9.

4.13. Remark. (a) £ = —d(s? - p*a)is not a C-mvarlant form. The form
—d(s - p*a°) defines a C-invariant symplectic structure on L. The results of
4.10, 4.11 and 4.12 are also valid for this invariant symplectic form (if we
definef=s-f0 7). )

(b) If we identify Ver L with #*L, we have (L lyerf x veri cotresponds to
the imaginary part of the Hermitian structure ¢, -) on L, or, using Verl =
L x C, to the natural symplectic structure on C. This is true only for £ and
not for the C-invariant symplectic form of 4.13 (a). Therefore Q seems to be
more natural than the invariant symplectic form.

By the isomorphy of VerZ and #*L the complex structure on L and the
Hermitian metric induce a complex structure /¥ and a Hermitian memc ¢,
on Verl, and the imaginary part of (-, )V is  |veri x Vers.-

Assutne there exists an almost complex structure j on the symplectic mani-
fold M, such that (M, j, H) becomes an almost Kaehlerian manifold, where &
is defined by H(x, v)= L - w(x,¥) + w(jx,y) for all x; y € TM. Then by hori-
zontal lifting Hor L becomes an almost Kaehlerian vector bundle. Define

Jo=iv+ 7% and Loyoyi=(, W +%H
Then (L, J, - ‘))j is an almost Kaehlerian manifold. So we have the following:

4.14. Proposition. Let (M,,{-, - ) be an almost Kaehlerian manifold
and w :=Im{-, 7 be mtegral Assume (L, &) to be a PQB over

(M, «3). Then the complex PQB L corresponding to L becomes in a
natural way an almost complex manifold.

5. Projective Hilbert Spaces

In this section we give an important example for a prequantum bundle
over an infinite-dimensional manifold: the Hopf fibration of a complex Hilbert

space. .
Notation. Let (H, € -, - ») be a complex Hilbert space. H:=H\{0}.8:=
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Im4-, -Disasymplectic and § := Re { -, - » a Riemannian structure on H and
forallg, y €H:

Cop, YD =S(p, ¥) + e, ¥) and Qip, ¥)=S(p, ¥)
, M is a Kachlerian manifold. Denote by ! the orthogonal complement of
( -y and for ¢ € Hdefine $ := C-ypand ¢* =(C- go)

The projective Hilbert space H of H is defined by H:=H/C. Hisa complex
analytic manifold, charts are > given b by the projective representation. For g3 € H
define g, 1 (C- 9o) = FINT - 9o)% ¢ = C (0 + o). Then {(ANT " ¢)"
% Nog € F}isan holomorphic atlas of . For ¢, € H the tangent space
13, [H]lsglvenbyT f= {po} x (C- 0o)t C H x H. Denote by 7: H -~ [Hl the
canomca] pm]ectlon Then (M, #, ) is a principal C bundle. Note that TH=
H x H.

A connection form o on (H, 7, H) is given by

a(ny) = {v, ©)
v, .
¢ L, {p»

The corresponding decomposition of T'H is

TH~HxH 2 VerH x HorH = Hx C x HorH

forv, €TH= HxH (ie,vEH)

Kv, o)
v (@, 1) > (Pr e . y(0), PY(¢ - py(v)) = ( ; i o Ple - v ))

where pry is the orthogonal projection onto the subspace U. Define the
foilowing tensors on H:

S(pr(@ . (,o)l(”): Pi¢c- sp)L(W))
L, o

§(vy, Ww) = for v,, w, € TH

6y, W) 1= Upr(c- o)), Prc- )W)

1
Ko, 0¥
1 1 ,

[CARE (oo (v.,o)=——->->'lv

Then §, 63, jare € invariant. § and & are horizontal and j (Hor H) C Hor H. So
§ &, ] induce #r-related tensors s, <o, j on H with w(7 -, )=s(-,").
5.1. Lemma. Define the 1-form B on H by (y,) = Q(v, 9)/€e, ¥).
Thendf= —&

Proof.
1 1
= A~ 9) - ——Q
o= d(« ) AR !

IR PPN | GaT 2 LAY ST ) W
o, 0P Lo, 0d “
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since
Red -, od AIm&yp, - =54, o) \Q:ij_ x ol
So & is exact and therefore w closed and we obtain the following:

5.2. Proposition. Let H be a complex Hilbert space. Then H= i}'jl/i‘fl
becomes a Kaehlerian manifold in a natural way. In particular (H, w)
is a symplectic manifold.

Denote by H® := H/R¥ and p: 1~ H€ the natural projection. Then H isa
principal circle bundle over H. Define 7°: H¢ - H by n° = 7| ye. The bundle
(F, p, H% is a principal (R*, - ) bundle and we can identify H¢ with the one-
sphere of H S'(H) = {p€EHICp, pd=1}

The one-form § on M defined by 5.1 is R* invariant and horizontal, so
there exists an unique one-form o€ on H¢ with p*a© = . Moreover, we get by
differentiation the following:

5.3. Lemma. of is a connection form of the bundle (H, 7€, 1, T)and
a=d(og &, Y +i-p*a©
5.4. Theorem. Let (H, € -, - §) be a complex Hilbert space. Then

(H°, «%) is a prequantum bundle over the projective Hilbert space
Fi = F/C. The bundle (F1, #, ) is the corresponding complex PQB.

Proof. We have only to show that curve® = —w. By 5.3 curva® = curve and
by 5.1 dp*a® =dB= —G&. So #*w = —p*da‘ = ~da.

Note. Any T sphere for T' € R* of H isa PQB over .
Caution! The corresponding line bundle H x ¢Cis not the Hilbert space H.
His not even a bundle over H.

5.5. Proposition. The induced symplectic structure (see 4.9.) on the
total space of the complex prequantum bundle (H, m, lH]) coincides
with the natural symplectic structure £2 onH.

Proof.
d(& g, oY - p*ac) = (dy, o) A pFa + K, o) - p*da’
A9 Qe gyt x (c- )t
=25(p, - — L, 0h =_0
N ey o, 09

(Compare the proof of 5.1.)

5.6. Corollary. The Kaehler structure on H is induced by the Kaehler
structure on [, the base of the complex PQB (H, 7, ).

5.7. Proposition. Let X € ¥H be a vector field, i.e., let X be a smooth

(not necessary linear) operator H - H. Then X € ,}f v = PRiff

(@) X(c-p)=c- X(p)forallg€ Hand c € € and iff

(b) «X(0), ¥»+ Ko, X(Y)»=0for all p, ¥ € H. (i.e., X is anti-
symmetric.)
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Proof. X is C-invariant iff c*X = X. ¢*X(¢)=Tc ™ o X o c(p) =1 - ¥(c- ¢).
For all ¢ € C and ¢ € H. This proves (a). Let Fy: I, x U~ H be the (local)
flow of X. Then F; is C-equivariant iff X is C invariant. F, is isometric iff for
allg, ¥ € H 0= (d/dt) & Fpo, FU) = CFp, ¥) + o, FY), and any C-equi-
variant flow is isometric iff it is symplectic.

Remark. Because of 5.7 (a) any invariant vector field X €2 1™ [] extends
to a smooth operator X: H- H by X(0)=0.

5.8. Remark. m;(H) =0, so Spl(#) = Sp} W) and (HC, ) is the unique
POB over (M, w) (for dim H # 1).

6. On Quantum Dynamics

In this section we want to give a short outline of how prequantum bundles
can be used to describe the dynamics of a general quantum system. For the
foundations of quantum mechanics we refer to Jauch (1968). Our basic assump-
tions are as follows:

A quantum mechanical system is described by a complex Hilbert
space H. The lattice & (H) of all closed subspaces of His the logic

“of the quantum system. Elements of the projective space [ represent
the pure states. Observables are represented by the {possibly unbounded)
self-adjoint operators of H.

The unitary operators are the isomorphisms of the system. For simplicity
we will restrict our attention in the following to smooth operators. All results
of this section can be extended to unbounded operators by using the methods
of Marsden (1968).

Notation.

U(H) := the Banach Lie group of unitary operators
Proj(H) := U(H)/ T, the projective group
FA(H) : = the symmetric operators of H
i FA(H) := the Lie algebra of antisymmetric operators
Pi(H) =i SAMHR (X~ YIfX ~ Y=i-A-1for X, Y Ei FA(H)

i P4(H) and Zj(H) are the Lie algebras of U(H) and Proj(H). By definition
the following sequences of groups or, respectively, Lie algebras are exact:
0-> T U(H)~>Proj(H)~0
0> R i LAH) »2i(H)—>0
Note. Elements of Proj (H) project to morphisms of H and elements of

2j(H) to vector fields of H.
The following proposition is well known (Marsden, 1968):
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6.1. Proposition. Let X be a complex linear vector field on H with

complex linear flow F;. (Le., X is a linear operator.) Then the following
are equivalent:

(i) X is Hamiltonian
() X 1Q=dEwithE: H >R, E(0)= 54iXp, ©)
(i) X €1 LA(H),i.e.,iX is symmetric
(iv) F issymplectic forallz €R
(v) F is unitary forall € R.

The dynamics of the quantum system is given by the Schrddinger operator
HE PA(H). For i € R* we have H = ifi - X for a complex linear Hamiltonian

vector field X on M. Integral curves of X are solutions of the Schrddinger equa-
tion and describe the time evolution of the system:

., dog
h— =H
har | ()

Now consider the PQB (H, o) over (H, w). Then we obtain by 5.7. the following:
6.2. Lemma:
U(H) = {F € Preq(H)| F is additive} C Preq(H, &)

i FA(H) = {X EP(H)| X is additive} C #H

So U(H) consists of all prequantum-morphisms, which map closed

subspaces of H into closed subspaces, i.e., which are also morphisms
of the logic Z(H).

6.3, Corollary. The following diagrams of groups or, respectively, Lie
algebras are commutative with exact lines:

0 —— T “ Preq(H,a} —— Spl(H) — 0

) §) (6.1)
0 ——>T “~— U(H) ——> Proj(H}—> 0

0 R “— PH HH 0
I J §) (6.1

0——> R “ iPAH} — Pi#H — 0

Using the results of Sections 4 and 5 we obtain the following (formal) corres-
pondence between the structure of a (time-independent) classical mechanical
system and a quantum mechanical system:
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Classical system

Phase space (M, w)

Hamiltonian systems #M

Logic: (M) (Borel sets of M)

Observables: #M

Canonical transformations:
SplM, w) = Spl(M, w) N
AutB(M)

Hamiltonian function f€ FM

Hamiltonian vector field Xy
PQB (L, &) over M

(if w is integral)
Spl form of L: Q (see 4.9)

Py

Hamiltonian of P
f=s%fo(see 4.12)
Time evolution: F. flow of X

d
ar F(m)ls=o :Xf(m)>
meM

F'is 7 related to F with

d ~
ar Fxm)li=0 =Pf(xm)
(see 4.12}

Quantum system

Space of pure states (H, w)
Hamiltonian Systems on H:#H
Logic: Z(H) CZ(H) _
IPAH)CPHE FH
Proj(H) = Spl(H, w) N Aut Z(H)

Expectation value £: H >R

{Hy, 0d

EGo)= 3%((@, oy

Xz =dE¥ on H (H Schrodinger Op.)
Hilbert-PQB (H, o)

Q=Im{-,-»(see 5.5)
1
PE = XE = % H
Hamiltonian of Xg
E=¢-,-Y-E o= (1/2h)  (Ho,0)
é flow of XE iff

d . . o
7 0:(P)s=0 = X5(D)
¢ is wrelated to é with

d
i d—t%(cp)iﬁo =it Xg(p) =H(p)

{Schrédinger equation)

7. The Prequantization Functor

The main application of prequantum bundles is the prequantization
procedure of B. Kostant (1970). Using the Hilbert PQB of Section 5 we give
a functorial definition of prequantization.

Denote by T-PQB the category of prequantum bundles with morphisms
as defined in 4.3. By the results of Section 4 T-PQB is equivalent to the cate-
gory C-PQB of all complex prequantum bundles and to the category L-PQB of .
all line bundles with covariant derivative ¥, Vaffine Hermitian structure and
symplectic curvature. The subcategories of finite d1mens1ona1 prequantum
bundles will be denoted, respecuvely, by T- PQB/, 413 -PQB/, L-PQB/

Let LS =

(L,,QZ,M)E T-PQB” and L; =

=(L;, V1{-, ) the corresponding

line bundles of Z-PQB’,i =1, 2. For any PQB morphlsm FE LY~ LS the induced

7

L, ——— L,

s

.1’171 '—“f—’) M 2
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L-PQB morphism f: Ly = L, restrict on each fiber of Ly to an isomorphism
Fom: 71 (m) > 732 (f(m)). f is a PQB isomorphism iff the base map f:M; > M,
is a symplectomorphism.

Therefore we can define the contravariant section functor T on L-PQB:
(L) = {o:M~ Lo section} and I'(f) := f*: (L3} > T(L), f¥o(m) 1=
fa (a[f(m)]) for f: Ly = Ly, m €My, 0 ET(Ly).

For any finite-dimensional POB (L¢, o) over (M, w) the form p = ¢ (4imM/2
is a natural volume on M (the Liouville measure). Using this volume and the
affine Hermltlan structure we can define on the category L-PQB” the Hilbert
space valued L2section functor

r¥(2) = (0 € L) far(olm), 0(m))p(m) € RYN=: H(L)
2 () == [restricted on H(Ly)]
for L=(L,V,{, )€ LPQB’ over (M, w)and f: L; —~ L,. (N denotes the
space of all sections, which vanish except on a set of measure zero.)

7.1. Proposition: Let (L;, V' (-, ) € L- PQB’ i=1,2andf: Ly~ L,
a PQB morphism, Then f*: H (L 2)>H(L;)isa pa1t1a1 isometry, i.e.,
F*l(keer#yt: (Ker f*)t > H(L,) is an isometry.
Proof. For the Hermitian structure in H(L;) we have
(F*0, %09 = fu, \fi* © 0 0 fm), fin" © 0 © Fm) py(m)

= [701,(0), 9> - 7, ()
since f is symplectic and therefore volume preserving.

Kerf* = {0 €EH(Ly)lo o f=0} = {0 EH(Ly)l 0l7gu,) = 0

(Kerf*)* = {0 € H(Ly) | 0lprppau,y = 0}
So (0, 0%, = (f*0, f¥o), iff 0 € (Kerf*)4

7.2 Definition. K(f): H(L{) >H(L,), K(f): = (f*| kerpsyt)
K(f) is a Cinear isometric imbedding H(L,) > H{L,) and therefore a sym-
plectic map. Let K(f) be K(f) restricted on H(L ) =H{L)\{0}. Then K( fd)
project to a symplectic map K(f) F(L )~ (L), so K (Fy, gy, F1) =
(H,, 7y, Fp) with H;: = H(L;) is a PQB morphism, Moreover, K(fog) =
K(f) o K(g) for PQB morphxsms fand g. This gives the following:

7.3. Proposition. K : L- PQB’ > C-PQB is a covariant functor. By equiva-
lence of L-PQB and C-PQB K is also a covariant functor ¢ PQB -
€ -POB.

7.4. Definition. The functor K : C-PQB/ ~ C-PQB will be calied the Kostant
Junctor.

Remark. I f L~ L,i=1,2and L,L' € L- PQB’ are PQB morphisms over
the same base map g: M—M thenby 44f, =c- f, forac& T,and so K=
K(fz) i.e., the induced symplectic map FI(L) ~ H (L") only depends on the
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base map g and—of course—on L and L’. Define K(g) : K(fl) K(fz) This
definition depends on the bundles L and L', therefore K is not a functor. We
obtain by 4.2 and 4.3 only for the simply connected case the following:

7.5. Proposition. The Kostant functor K induces a covariant functor
K from the category of simply connected finite-dimensional symp-
lectic manifolds (M, w) with integral w into the category of symp-
lectic manifolds by K(M, w) := K(L) and K(g) := K(f), where L is
the unique PQB over (M, ) and fis a PQB morphism over g.

Let (L, @) be a PQB’ over (M, w). Then K : Preq(, o) > Preq(Fi(L), o,y ) is a
group morphism. The induced infinitesimal morphism will be the prequantxza
tion map of Kostant. To prove this we need the following:

7.6. Lemma. Let (L, o) be a PQB over (M, wyand L =(L,v,{-, "))
the corresponding line bundle,g:Lx C =L

L xC LN §
\ +

L——M

the natural projection and ¢ *: I'"°L - F *®([,, C) the induced iso-
morphism. Then for any f€ FMand e €T7L

Lppa*o = q*(Vass0 +ihf- o)
Proof. Br=Gptfo @ -Z=Gp+ih- fo by 3.10.
Lin. ronq¥o=in-fom- U_iq*(:r:ih-fofr-q*0=q*(ih-f~ g)

since g*o is C equivariant. | g g% = q*(vdf#o) by definition of V (see Greub

et al., 1973). Let I'Z(L) be the space of all C* sections with compact support.
r; (L) is a dense subset of H(L)=:H, so the map FM=Z PL —~ End""L,
fHVdf# +i7 - f defines a map k: 97M—> End H. If i P A(H)is the space of
all—possibly unbounded— antisymmetric C-linear operators of H, then
k(fy€i PA(M) (since the Hermitian structure (-, -)on LisV afﬁne). More-
over, for all f, g € FM: k({f, g}) = [k([f), k{g)] (commutator) by 7.6 and 2.6.
So we have the following:

7.7. Proposition: k. FM ~i FA(H), f>Vge# +ifi- fisa Lie algebra
homomorphism induced by the group morphism K : Preq L, o)~
Preq(H). In particular £(f) € 2Hif k(f) is bounded. k is called the
Kostant prequantization map.

Acknowledgments

1 wish to thank the members of the group “Geometric Quantization” at the Technische
Universitdt Berlin under guidance of K, E. Hellwig for helpful discussions. I should also
like to thank K. E. Hellwig, H. He#%, and R. Zavoduik for reading the manuscript and for
critical remarks. This work is a part of the author’s thesis at the Freie Universitit Berlin.



464 GUNTHER

References

Abraham, R. and Marsden, 1. E. (1967). Foundations of Mechanics, Benjamin, Reading,
Massachusetts (1972).

Flaschel, P. and Klingenberg, W. (1972). Riemapnsche Hilbertmannigfaltigkeiten,
Periodische Geoddtische, Springer, Lecture Notes in Mathematics 282.

Greub, W., Halperin, S, and Vanstone, R. (1973). Connections, Curvature and Cohomology
1I, Academic Press, New York/London.

Gawedzki, K. and Szapiro, T. (1974). Reports on Mathemutical Physics, 6,477.

Hermann, R. (1973). Topics in the Mathematics of Quantum Mechanics (Interdisciplinary
Mathematics VI), privately printed, US.A.

Jauch, J. M. (1968). Foundations of Quantum Mechanics, Addison-Wesley, Reading,
Massachuseits.

Kostant, B. {1970). “Quantization and Unitary Representations,” in: Lectures in Modern
Analysis and Applications III, Taam, C. T. ed., Springer Lecture Notes in
Mathematics, 170.

Kostant, B. (1973). Line Bundles and the Prequantized Schrodinger Equation, Symposia
Math.

Marsden, J. E. (1968). Archive for Rational Mechanics and Analysis, 28, 362.

Souriaw, J. (1970). Structure des Systemes Dynamiques, Dunod, Paris.

Vaisman, i. (1973). Cohomology and Differential Forms, Marcel Dekker, Inc., New York.



